Mark scheme – Energy, Power, Resistance Circuits Symbols

Q	uestic	on	Answer/Indicative content	Marks	Guidance
1			С	1	Examiner's Comments This question was based on recognising circuit symbols. This was successfully answered by the vast majority of the candidates who opted for C because of the light-dependent resistor in the circuit. The popular distractor was A. The light-emitting diode in circuit A was often mistaken for a light-dependent resistor.
			Total	1	
2			в	1	Examiner's Comments The correct response is B . This question was correctly answered by around two thirds of candidates. There appeared to be various routes to the correct solution; many opted to work out a current in terms of <i>R</i> , but the more elegant working was in terms of simple ratios which demonstrated a good understanding of p.d. in a series circuit. Encouragingly, very few candidates opted for response A , which was a p.d. below that of the thermistor alone. It should be noted that a couple of candidates put a '7' in the answer box – as correct working had been shown by them, and leading to the correct numerical value this was credited by examiners. However, this cannot be guaranteed to occur in other cases and candidates are to be encouraged to put only the correct letter.
			Total	1	
3			D	1	
			Total	1	
4			the current (induced in the aerial) is alternating (5 × 10 ⁸ times per second) (so the meter would register zero) / AW or the diode (half-)rectifies the current / changes the current (from a.c.) to d.c. / AW	B1	 Allow 'a diode only lets current pass through in one direction' AW Examiner's Comments Allowing a mark for the diode only letting current pass in one direction enabled many candidates to score this mark. There was

				little mention of alternating current among the responses.
		Total	1	
5		$\Sigma E = \Sigma V \text{ or } \Sigma E = \Sigma Ir$ $E = V + Ir \Rightarrow V = E - Ir$	C1 A1	
		Total	2	
6		Circuit with cell in series with an ammeter and variable resistor. A voltmeter is connected across the variable resistor / (terminals of the) cell	B1	Allow this B1 mark for a clearly drawn circuit with correct symbols for the cell, variable resistor, voltmeter and ammeter. Allow a battery symbol instead of symbol for a cell
				Allow 'terminal p.d.' for p.d. across the cell Allow 'measure <i>I</i> and <i>V</i> ' if the circuit is correct Allow 'measure voltmeter and ammeter readings' if the circuit is correct Possible ECF for incorrect symbol for variable resistor
		Measure current and p.d./voltage across variable resistor / cell	B1	Examiner's Comments Candidates were familiar with this experiment and some gave answers using the bullet points as prompts. Although most candidates scored two or more marks, there were some missed opportunities. The most common error was the incorrect symbol for the variable resistor in the circuit. It was either a thermistor symbol or a hybrid. Some candidates also lost a mark for not clearly specifying the graph being plotted. Instead of 'Plot a graph of V against I and determine the gradient which is equal to the internal resistance', examiners were faced with less robust statements such as 'Plot a graph and find the gradient' or 'Use the data to draw a graph and use $E = V + Ir$ to calculate r'.
		Correct description of how to get multiple readings (of current or p.d) E.g. change the resistance of the variable resistor / use different value resistors, etc.	B1	
		(E = V + Ir) Plot a graph of V against I and the gradient (of the graph / line) is equal to (-) r (AW)	B1	
		Total	4	
7				Note that each of the M1 mark can be implied in a calculation
		Any <u>three</u> from:	M1×3	Note 8.3 (Ω) will score the 3.0 V and the

	 Fig. 23.3 - p.d. split equally / (p.d. across each =) 3.0 (V) Fig. 23.3 - current = 0.36 (A) (from the graph) Fig. 23.4 - p.d. = 6.0 (V) (across each or combination) Fig. 23.4 - current (= 2 × 0.50) = 1.0(0) (A) 0.36 × 3 (= 1.08) is about 1.0 (A) 	A1	0.36 A marks Note 12 (Ω) will score the 6.0 V mark Note 12 (Ω) will score the 6.0 V mark Note this mark is for showing that <i>I_P</i> is about 3 times <i>I_S</i> Examiner's Comments This question produced a range of marks, with most candidates securing 2 or more marks. For the lamps in series, it was important to recognise that the potential difference across each lamp is 3.0 V. From the <i>I-V</i> graph, this meant a current <i>I_S</i> of about 0.36 A. For the lamps in parallel, the current in each lamp was 0.50 A because the potential difference across each lamp was 6.0 V. This meant that the current <i>I_P</i> was twice the current in each lamp; 1.00 A. The current <i>I_P</i> is about 2.8 times greater than current <i>I_S</i> . This final step of the analysis was often omitted by most of the candidates. A significant number of candidates scored no marks here and about 10% of the candidates omitted this question altogether. Misconception The most common mistake made by candidates, across the ability spectrum, was to assume that each lamp had a constant resistance of 12 Ω in the series combination. A lamp is a non-ohmic component. At a potential difference of 3.0 V, the resistance of each lamp is about 8.3 Ω.
	Total	4	
8	 Please refer to point 10 of the marking instructions of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(b). Explanation of action of both circuits is correct. Presence of 100 Ω explained. 	B1	Indicative scientific points may include circuit diagram 1. resistor and LED in series 2. ammeter in series and voltmeter in parallel with LED 3. correct symbols for LED, ammeter, voltmeter, etc.

		There is a well-developed line of reasoning which is clear and logically structured. The		4. correct polarity of LED
		information presented is relevant and substantiated.		action of circuit
		Level 2 (3–4 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(b). Action of only Fig. 4.2(b) circuit explained correctly. Purpose of 100 Ω stated but value not justified. There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence. Level 1 (1–2 marks) Typically, circuit including meters is correctly drawn on Fig. 4.2(a). No correct explanations or basic information on the action of circuit or presence of 100 Ω resistor. The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear O marks No response or no response worthy of credit.		 circuit completed on Fig. 4.2(b) voltage across AB can be varied from 0 to 6 V some justification; e.g. potential divider circuit in Fig. 4.2(a) circuit voltage only varies from 6 to about 5.6 V as resistance can only be varied from 110 to 100 Ω (+ LED)/AW presence of 100 Ω resistor the current in the circuit is limited by the resistor so ensures LED cannot burn out at 6 V the potential divider across AB gives 2 V across LED as its resistance is about 50 Ω / AW
;		Total	6	
9	i	$V = \frac{1.1}{6.8 + 1.4 + 1.1} \times 6$	C1	Allow $I = \frac{6}{(6.8+1.4+1.1)\times 10^3} = 0.00065$ Allow 0.7 Examiner's Comments Candidates who use the potential divider
		0. 71 (V)	A1	equation invariably gained the correct answer of 0.71 V. Alternatively, some candidates correctly determined the current and then determined the voltmeter reading.
		As temperature of thermistor increases, resistance of thermistor decreases Total resistance of circuit decreases or current increases	B1 B1	answer of 0.71 V. Alternatively, some candidates correctly determined the current and then determined the voltmeter reading. Examiner's Comments Candidates were expected to explain how the voltmeter reading would change as the temperature of the thermistor increased. Good answers used a step-by-step approach. Candidates needed to explain
	ii	As temperature of thermistor increases, resistance of thermistor decreases Total resistance of circuit decreases or	B1	answer of 0.71 V. Alternatively, some candidates correctly determined the current and then determined the voltmeter reading. Examiner's Comments Candidates were expected to explain how the voltmeter reading would change as the temperature of the thermistor increased. Good answers used a step-by-step

				meaning of V_{1} , R_{2} , or explaining which p.d. or resistance was being referred to.
		Total	6	
10	i	*	B1	two arrows needed not across resistor; allow a surrounding circle with arrows outside circle
	ï	1 from graph 3.0 (k Ω) I = 4.0 / 3.0 = 1.33 × 10 ⁻³ A or R = 2.0 / 4.0 × 3.0 × 10 ³ R = (6.0 - 4.0) / 1.33 × 10 ⁻³ = 1.5 × 10 ³ (Ω) 2 at 2.4 V R _{LDR} = 1.0 k Ω giving 2.5 (W m ⁻²)	B1 C1 A1 M1	allow $3.1 \pm 0.1 (k\Omega)$ accept 1.3 mA ; accept potential divider argument allow $1.5 \text{ k}\Omega$; special case: using 2.4 V in place of 4.0 V gives R = $4.5 \text{ k}\Omega$; give 1 mark out of 2 ecf (b)(ii); allow potential divider or I = 2.4 mA ; for special case: R _{LDR} = $9.0 \text{ k}\Omega$; give 1 mark out of 2 allow $2.4 \text{ to } 2.6 \text{ W m}^{-2}$ N.B. remember to record a mark out of 5 here Examiner's Comments More than half of the candidates knew the correct circuit symbol for an LDR. The most common error was to draw an LED. More candidates used a potential divider approach to solve the problem than calculated the current in the circuit; many gaining full marks. Those who misread the question and reversed the voltages required to switch the lamp on and off were given some credit for their answers.
		Total	6	
11	-	Arrow in anticlockwise direction	B1	Allow this mark for correct direction shown on diagram either on or off connecting wires <u>Examiner's Comments</u> This question required the candidates to appreciate that the sum of the emfs will lead to an anticlockwise conventional current. This question was answered well by the majority of candidates, however a number put two directions on, one from each cell. Misconception The unusual setting out of the circuit meant that some candidates were unsure whether parts of the circuit were in series or parallel.

			This could have been overcome by following the circuit or even by redrawing it.
			<i>E</i> = 2.1 (V); R _T = 2.5 (Ω)
			Treat missing 1.2 resistance as TE
			Allow 2 marks for 2.8 (A); E = 6.9 V used
	(<i>E</i> =) 4.5 – 2.4 or (R _T =) 0.80 + 0.50 + 1.2	C1	Examiner's Comments
ii	4.5 – 2.4 = <i>I</i> × (0.80 + 0.50 + 1.2)	C1	This calculation required the candidate to set out the whole circuit in one. Around one third
	<i>I</i> = 0.84 (A)	A1	did not score any marks on this question as they attempted to treat each cell individually and then produce some form of average. Other common misunderstandings included treating the 0.5 ohm and 0.8 ohm resistors as if they were in parallel, and adding the emfs.
			Possible ECF from (ii)
	(<i>I = Anev</i>)		Note answer is 2.5×10^{-3} (m s ⁻¹) for $I = 2.76$ (A) Allow 1 mark for 1.9×10^{-4} ; diameter used as radius
	$0.84 = \pi \times (2.3 \times 10^{-4})^2 \times 4.2 \times 10^{28} \times 1.60 \times 10^{28}$	C1	Examiner's Comments
	$10^{-19} \times v$ $v = 7.5 \times 10^{-4} \text{ (m s}^{-1)}$	A1	This question was well done by a large number of candidates, many of whom scored full marks by correctly following through with their value of current from the previous part. Few candidates used the diameter instead of the radius when determining the cross sectional area, and for the most part the setting out of the calculation meant that credit could be given even if arithmetic errors occurred later.
			Allow keep the surroundings cold
	Sensible suggestion, e.g. use a water bath /		Allow to keep the temperature / resistance constant OR allow increase in temperature increases resistance
iv	fan / only switch on when taking readings	M1	Examiner's Comments
	Need to lower the temperature / reduce resistance of R	A1	Candidates were expected to provide any method of cooling the circuit, or preventing it heating in the first place. A wide variety of solutions were given and as long it is viable, it was credited.

					Misconception Some candidates gave perfectly viable solutions, but these involved changes to the circuit, which was not allowed in the question. It is very important to make sure than any response does fit what is being asked.
			Total	8	
12	а	i	$\frac{1}{R} = \frac{1}{60} + \frac{1}{60} \text{ or } \frac{1}{R} = \frac{1}{60} + \frac{1}{60} + \frac{1}{60} \text{ or } R = \frac{60}{n} \text{ or } R = \frac{60 \times 60}{60 + 60}$ $30 \ \Omega + 20 \ \Omega = 50 \ \Omega$	M1 A1	Examiner's Comments This question was generally answered well although, a number of candidates did not take due care when writing the mathematical expressions. Exemplar 6 (a) Fig.4 shows a droat with the identical 600 restors. The battery has electromotive force (a) Fig.4 shows a droat with the identical 600 restors. The battery has electromotive force (b) $V = \frac{1}{(en.f.) \oplus U} + \frac{1}{(en.f.) $
		ii	$\frac{30}{50} \times 9 \text{ or } I = \frac{9}{50} = 0.18 \text{ A}$ 5.4 V	C1 A1	Examiner's Comments For this question, many candidates incorrectly stated that the potential difference was 4.5 V. Other candidates tried determining the current but did not make clear their working. The simplest solution was to use the potential divider relationship.

				Allow ECF from (ii)
				Allow 10.8
				Note 0.18 C scores two marks provided 0.09 A is seen Note 21.6 C scores one mark (for the correct unit)
		$\left(I = \frac{5.4}{60} =\right) 0.090 \text{ A}$	C1	
	iii	(0.09 x 120 =) 11	A1	Examiner's Comments
		C or coulomb	B1	The majority of the candidates gained a mark for the unit of charge on this question.
				A common incorrect answer was 21.6 C where candidates had used the total current in the circuit rather than the current of 0.09 A in resistor Y. Some candidates did not change the time in minutes to a time in seconds.
				Note 58(.3) if 10.8 C used Allow ECF from (ii) and/or (iii) Not 60
	iv	(11 x 5.4 or 0.09 x 5.4 x 120)= 59 or 58 (J)	A1	Examiner's Comments
				Candidates who multiplied the charge by the potential difference easily gained the mark in this question. Other candidates who used different methods often made mistakes.
				Allow any correct rearrangement of <i>I</i> = <i>nAve</i>
				Allow $I_{\rm Y}$ = 0.090 A and $I_{\rm Z}$ = 0.060 A OR $I_{\rm Y}$ / $I_{\rm Z}$ = 1.5 ORA
		$I = nAve \text{ or } v \alpha I$	B1	Examiner's Comments
b)	larger current through Y than Z ORA	B1	In this question, many candidates correctly quoted the equation and stated that the mean drift velocity was directly proportional
		drift velocity in Y is 1.5 times drift velocity in Z ORA	B1	mean drift velocity was directly proportional to the current. The majority of the candidates realised that there was a larger current in resistor Y than resistor Z; however, few candidates realised that the current was 1.5 times larger and therefore the mean drift velocity was 1.5 times larger.
		Total	11	

13	i	Correct circuit with a battery, potential divider, lamp and voltmeter. (4.0V)	B1	
	i	Correct symbols used for all components.	B1	Allow: A cell symbol for a battery
	ii	Description: The temperature of the filament increases. (AW)	B1	
	ii	The resistance of the lamp increases	M1	
	ii	from a non-zero value of resistance.	A1	Allow 'when cold the resistance is small'
	ii	Explanation: Resistance increases because electrons/charge carriers make frequent collisions with ions. (AW)	B1	
	iii	(<i>P</i> = <i>VI</i>) current in X is 3 times the current in Y Or area of X is 4 times smaller than area of Y	C1	Allow other correct methods.
	iii	$I = Anev$ and ratio = $\frac{3}{0.25}$	C1	
	iii	ratio = 12	A1	
		Total	9	